侧通道攻击对加密算法构成了严重的威胁,包括广泛使用的算法,例如AES和RSA,利用硬件或软件中的算法实现,以通过计时和/或电力侧通道来提取秘密信息。软件掩蔽是一种针对电力侧通道攻击的软件缓解方法,旨在将秘密浏览依赖性隐藏在脆弱实现的功率足迹之外。但是,这种类型的软件缓解通常取决于通用编译器,这些编译器不保留非功能性能。此外,Microarchitectural特征(例如内存总线和寄存器重复使用)也可能揭示秘密信息。这些抽象在该程序的高级实施中不可见。相反,它们是在编译时间决定的。为了解决这些问题,安全工程师通常通过关闭编译器优化和/或执行本地兼容后转换来牺牲代码效率。本文提出了SECCONCG,这是一种基于约束的编译器方法,该方法生成了优化但安全的代码。 SECCONCG通过根据处理器成本模型有效地搜索最佳的低级实施来控制缓解程序的质量。在我们在MIPS32和ARM Cortex M0上进行十项掩盖实现的实验中,与非优化优化代码相比,SECCONCG的速度将生成的代码从10%提高到10%至10倍。对于安全和编译器研究人员,本文提出了一个正式模型,以生成安全的低级代码。对于软件工程师,SECCONCG提供了一种实用方法来优化保留安全属性的代码。
translated by 谷歌翻译
现代软件部署过程产生统一的软件,因此容易受到大规模的代码重用攻击,例如跳转编程(JOP)攻击。基于编译器的多样化通过自动生成给定程序的不同装配代码版本来提高软件系统的恢复。现有技术是有效的,但不具有对所产生变体的质量的精确控制。本文介绍了建筑(Divcon)的多样性,基于约束的软件多样化方法。与以前的方法不同,Divcon允许用户控制和调整多样性和代码质量的冲突目标。关键推动器是使用大型邻域搜索(LNS)以有效地生成高度多样化的代码。对于更大的问题,我们提出了LNS的组合,其结构分解了问题。为了进一步提高Divcon对JOP攻击的多样化效率,我们提出了一种针对JOP攻击特征的特定于应用的距离测量。我们评估嵌入式系统的流行基准套件20个功能。这些实验表明,LNS和我们的应用程序特定距离测量的组合产生了对JOP攻击具有高度弹性的二进制程序。我们的结果证实,每个汇编代码版本和整个版本池的多样性之间存在权衡。特别是,实验表明,Divcon生成近最佳的二进制程序,这些程序共享少量小工具。对于约束编程研究人员和从业者,本文表明LNS是寻找多样化解决方案的宝贵技术。对于安全研究人员和软件工程师,Divcon将基于编译的多样化范围扩展到性能关键和资源受限应用程序。
translated by 谷歌翻译
This paper proposes a question-answering system that can answer questions whose supporting evidence is spread over multiple (potentially long) documents. The system, called Visconde, uses a three-step pipeline to perform the task: decompose, retrieve, and aggregate. The first step decomposes the question into simpler questions using a few-shot large language model (LLM). Then, a state-of-the-art search engine is used to retrieve candidate passages from a large collection for each decomposed question. In the final step, we use the LLM in a few-shot setting to aggregate the contents of the passages into the final answer. The system is evaluated on three datasets: IIRC, Qasper, and StrategyQA. Results suggest that current retrievers are the main bottleneck and that readers are already performing at the human level as long as relevant passages are provided. The system is also shown to be more effective when the model is induced to give explanations before answering a question. Code is available at \url{https://github.com/neuralmind-ai/visconde}.
translated by 谷歌翻译
A systematic review on machine-learning strategies for improving generalizability (cross-subjects and cross-sessions) electroencephalography (EEG) based in emotion classification was realized. In this context, the non-stationarity of EEG signals is a critical issue and can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this issue, mainly based on transfer learning methods. 418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques for generalization in EEG-based emotion assessment. Among these papers, 75 were found eligible based on their relevance to the problem. Studies lacking a specific cross-subject and cross-session validation strategy and making use of other biosignals as support were excluded. On the basis of the selected papers' analysis, a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief discussion on the different ML approaches involved. The studies with the best results in terms of average classification accuracy were identified, supporting that transfer learning methods seem to perform better than other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii) psychological screening of the experimental sample on the classifier performances.
translated by 谷歌翻译
Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
Bi-encoders and cross-encoders are widely used in many state-of-the-art retrieval pipelines. In this work we study the generalization ability of these two types of architectures on a wide range of parameter count on both in-domain and out-of-domain scenarios. We find that the number of parameters and early query-document interactions of cross-encoders play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that cross-encoders largely outperform bi-encoders of similar size in several tasks. In the BEIR benchmark, our largest cross-encoder surpasses a state-of-the-art bi-encoder by more than 4 average points. Finally, we show that using bi-encoders as first-stage retrievers provides no gains in comparison to a simpler retriever such as BM25 on out-of-domain tasks. The code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
translated by 谷歌翻译
AI-based code generators are an emerging solution for automatically writing programs starting from descriptions in natural language, by using deep neural networks (Neural Machine Translation, NMT). In particular, code generators have been used for ethical hacking and offensive security testing by generating proof-of-concept attacks. Unfortunately, the evaluation of code generators still faces several issues. The current practice uses automatic metrics, which compute the textual similarity of generated code with ground-truth references. However, it is not clear what metric to use, and which metric is most suitable for specific contexts. This practical experience report analyzes a large set of output similarity metrics on offensive code generators. We apply the metrics on two state-of-the-art NMT models using two datasets containing offensive assembly and Python code with their descriptions in the English language. We compare the estimates from the automatic metrics with human evaluation and provide practical insights into their strengths and limitations.
translated by 谷歌翻译
The understanding capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of image, text, and 3D point cloud by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification and zero-shot 3D classification on ModelNet40 and ScanObjectNN. ULIP also improves the performance of PointMLP by around 3% in 3D classification on ScanObjectNN, and outperforms PointCLIP by 28.8% on top-1 accuracy for zero-shot 3D classification on ModelNet40. Our code and pre-trained models will be released.
translated by 谷歌翻译
As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译
One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments. However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl.
translated by 谷歌翻译